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Manipulating and controlling the optical energy flow inside random media is a research frontier of
photonics and the basis of novel laser designs. Here, we show that a metamaterial consisting of randomly
dispersed graphene nanoflakes embedded within an optically pumped gain medium (rhodamine 6G) can
operate as a cavity-free laser thanks to its extraordinarily low threshold for saturable absorption. The
emitted light is self-organized into a well-determined spatial pattern, which depends on the graphene flake
density and can be externally controlled through the optical pump. We provide different examples of
tunable laser operation ranging from stable single-mode to chaoticlike behavior. Our metamaterial design
holds great potential for the optical control of light amplification, as well as for the development of single-
mode beam-engineered cavity-free lasers.
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Introduction.—Laser operation is usually achieved
through three basic elements: an amplifying medium, an
external pumping setup, and an optical cavity that confines
and shapes the emitted light in well-determined modes and
directions. However, several modern approaches are
extending this traditional laser paradigm into new avenues.
For instance, the fast developing fiber-laser technology
replaces the optical cavity with photonic fibers, thus
enabling large average powers and very high beam qualities
[1]. Additionally, the advent of nanoplasmonic materials
has prompted the demonstration of plasmon stimulated
emission in metallic nanoparticles [2–4] and waveguides
embedding gaining media [5–8], which enable lasing of
surface plasmon polaritons.
In a related context, cavity-free stimulated emission of

radiation has been widely studied in random lasers (RLs)
[9–11], where the optical cavity modes of traditional lasers
are replaced by multiple scattering in disordered media.
The complexity underpinning multiple scattering gives rise
to several exciting physical phenomena, ranging from
Anderson localization of light [12,13] coexisting with
extended modes [14,15] to glassy light behavior [16,17]
and an interesting interplay with additionally dispersed
plasmonic nanoparticles [18,19]. However, RLs lack exter-
nal tunability, reproducibility, and control over the spatial
pattern of the output beam. Overcoming these limitations is
central for the development and application of cost-
effective cavity-free lasers. In a complementary direction,
light amplification has been achieved in artificially engi-
neered materials—metamaterials—that hold promise as
planar sources of spatially and temporally coherent radi-
ation [20], for compensating losses in negative-index media
[21], and for achieving cavity-free lasing in the stopped-
light regime [22,23]. Alternatively, a promising strategy
for achieving cavity-free lasing consists in embedding

subwavelength random structures in an amplifying
medium, so that, rather than undergoing multiple scatter-
ing, light experiences the artificially engineered effective
optical response of the metamaterial. The extraordinary
optical properties of graphene [24–26] are appealing in this
context, particularly its highly saturated absorption at rather
modest light intensities [27,28], a remarkable feature that
has already been exploited for mode-locking in ultrafast
fiber lasers [29,30].
In this Letter, we investigate the optical properties of

randomly oriented undoped graphene flakes embedded in
externally pumped amplifying media (rhodamine 6G). In
contrast to traditional RLs, where strong scattering is
produced by random inclusions of size commensurate with
the light wavelength, here, we focus on the opposite
(quasistatic) regime, in which the medium behaves as an
active random metamaterial. We demonstrate a novel
mechanism leading to stable and tunable single-mode
cavity-free lasing: the high nonlinearity of the graphene
inclusions produces self-organization of light into peculiar
patterns leading to output beams that range from a few to
several hundred microns in size. These patterns can be
accurately manipulated through both the external pumping
setup and the volume density of the graphene flakes, which
also enable an interesting transition between chaotic and
stable single-mode lasing operation.
Random metamaterial design.—We focus on a disor-

dered medium composed of undoped graphene flakes and
rhodamine 6G (R6G) dyes dispersed in polymethylmetha-
crylate (PMMA), as schematically depicted in Fig. 1(a). We
remark that the practical fabrication of such a disordered
medium does not involve advanced nanofabrication tech-
niques, as graphene is routinely exfoliated from graphite
and dispersed in solutions such as dimethylformamide
(DMF), which also dissolves R6G and PMMA. For
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simplicity, we assume the graphene flakes to be disks with
volume density N and diameter D ¼ 30 nm, for which
quantum many-body and finite-size effects are negligible
[31]. We emphasize that unintentional doping of the flakes
(EF ≈ 0.2 eV), their geometric details, and their specific
size do not significantly influence their optical response in
the visible regime (geometry- and size-dependent resonan-
ces appear at infrared and lower frequencies under such low
doping). As we show below [see Supplemental Material
(SM) [32] as well], the effective optical response of the
random medium only depends on the graphene filling
fraction f ¼ NπðD=2Þ2a, where a ¼ 0.335 nm is an effec-
tive thickness taken from the interlayer distance in graphite.
R6G constitutes the optically amplifying medium, in

which population inversion can be achieved through a
frequency-doubled Nd-YAG laser-pump beam at wave-
length λ ¼ 532 nm. The aimed wavelength of laser oper-
ation is λ ¼ 593 nm, where R6G has its peak emission.
Under these conditions, graphene flakes are much smaller
than the optical wavelength and scattering is quite ineffi-
cient, so that their effect on optical propagation is captured
by the effective permittivity of the composite material (see
below). To place this in context, typical RLs also work with
R6G dispersed in PMMA [33], but in contrast, multiple
scattering is efficiently achieved through randomly posi-
tioned particles whose dimensions are comparable with the
optical wavelength [see Fig. 1(b)].
Saturable absorption of graphene.—In order to obtain

the effective permittivity of our metamaterial, we first need
to understand how the response of the graphene flakes
varies under the effect of a strong optical field. The conical
band structure of undoped graphene around the Dirac
points [see Fig. 2(a)] is responsible for its unique
properties. Valence electrons in this material behave as

two-dimensional massless Dirac fermions with constant
Fermi velocity vF ≃ 106 m=s [34,35]. As a consequence,
graphene exhibits a broadband nearly constant absorbance
α0 ≈ π=137 in the limit of small excitation intensities
[36,37], which also reflects a dispersionless linear conduc-
tivity σ0 ¼ e2=ð4ℏÞ. However, at higher light intensities,
absorption saturates due to the nonlinear dynamics of
graphene electrons [see Fig. 2(a)]. In simple terms, in
the strong-field regime, electron-hole recombination pro-
duced by electron collisions can balance light-induced
interband absorption, which is, in turn, partially inhibited
by Pauli blocking of out-of-equilibrium electrons in the
conduction band [see Fig. 2(a)]. In most materials, this
leads to a light-intensity (I) dependence of the absorbance
α, which typically follows a law αðIÞ ¼ α0=½1þ I=IS&,
where IS is the saturation intensity. However, we find that
the peculiar band structure of graphene produces a differ-
ent intensity dependence of the absorbance: αðIÞ ¼
α0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=IS

p
, where IS ¼ 137πℏω2

Sc
2=ð2v2Fλ2Þ and

ωS ¼ 6.16 rad ps−1 (see details in the SM [32]).
Interestingly, we find a remarkably small value of IS ≃
22 MW=cm2 (at λ ¼ 593 nm), which is consistent with
experimental findings [27,28]. In brief, we model out-of-
equilibrium electron dynamics through graphene Bloch
equations [38,39], which we solve numerically in the
presence of an external monochromatic electric field
EðtÞ ¼ Re½E0e−iωt&x̂ with angular frequency ω and polari-
zation along the x̂ direction (see details in the SM [32]).
Electron-hole recombination processes are taken into
account through a decay time τ, which, in our calculations,
is assumed to be τ ¼ 100 fs. This phenomenological
parameter accounts for the different and involved ultrafast

(a) (b)

FIG. 1. (a) Our proposed graphene-based active metamaterial
consists of a mixture of subwavelength graphene flakes and
dispersed rhodamine 6G molecules embedded in PMMA. We
envision graphene flakes of 10s nm in size, much smaller than the
wavelength of light, which, thus, propagates in an effective
medium with an exotic optical response. (b) In contrast, a tradi-
tional random laser uses dielectric particles instead of graphene,
with sizes and separations that are comparable with the light
wavelength in order to efficiently produce multiple scattering.
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FIG. 2. (a) Conical band structure around the Dirac points.
Upper EþðkÞ ¼ þℏvFk and lower E−ðkÞ ¼ −ℏvFk energy bands
depend linearly on the electron wave vector k. Interband
transitions produced by impinging photons with energy ℏω lead
to an out-of-equilibrium electron distribution, which then relaxes
via electron collisions. After an initial transient time, optical
pumping and electron relaxation compensate each other, and
absorption is saturated due to partial Pauli blocking. (b) Intensity-
dependent conductivity σðIÞ (which is frequency independent)
normalized to the universal conductivity σ0 ¼ e2=4ℏ.
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decay channels of out-of-equilibrium electrons into hot
carriers and phonons [40–42], which are treated in the
relaxation approximation. We numerically solve the Bloch
equations neglecting higher harmonic terms and calculating
the macroscopic current density JðtÞ [32,38,39]. The
intensity-dependent conductivity σðIÞ, which is plotted in
Fig. 2(b), is straightforwardly extracted from J ¼ Re½σE&.
Averaged optical response.—We model R6G amplifica-

tion through the traditional Bloch description of two-level
systems, where the external optical pumping is assumed to
yield a stable population inversion. For monochromatic
waves, Bloch dynamics can be solved analytically and, at
resonance, reduce to a purely imaginary susceptibility
accounting for gain: χR6G ¼ −iðg0=k0Þ=½1þ I=IR6GS &,
where k0 ¼ 2π=λ is the vacuum wave vector, λ ¼
593 nm (see above), g0 is the unsaturated gain coefficient
(which depends on R6G density and can be tuned through
the external pump at λpump ¼ 532 nm), and IR6GS ≃
150 MW=cm2 is the R6G saturation intensity [43]. For
simplicity, we disregard the effect of the optical pump on
graphene flakes. We note that unsaturated gain values of
about g0 ≃ 400 cm−1 have been experimentally demon-
strated with R6G [5]. PMMA contributes to the optical
response through a background dielectric constant ϵb ≃
2.23 at the operating wavelength. Randomly oriented
graphene disks are modeled through a standard quasistatic
approach [26,32]. The optical response of undoped gra-
phene disks is thoroughly accounted for by the first dipolar
resonance tail, which gives the polarizability αG ¼
D3=f3=ð2ϵbÞ − 8iϵ0cD=½λσðIÞ&g≃ πðD=2Þ2aχG, where
χG ¼ iσðIÞ=ðaϵ0ωÞ. The total response of the system is
finally calculated through Clausius-Mossotti effective-
medium theory in the limit of small graphene density:
ϵeffðIÞ≃ ϵb þ χR6G þ ð2=3ÞfχG, where the factor 2=3
accounts for averaging over the random orientation of
the disks (see SM [32] for more details). The optical
properties of the random medium, including PMMA,
saturated R6G amplification, graphene absorption, and
the induced phase shift, are thus fully contained within
ϵeffðIÞ. We emphasize that in the regime considered here,
the effective response ϵeffðIÞ does not depend on the size or
shape of the graphene flakes but only on their filling
fraction f ¼ NπðD=2Þ2a.
Dissipative optical dynamics.—Now, we use the above

results to simulate light amplification and lasing under
specific pumping conditions, describing self-organization
mechanisms of seed light beams launched inside the bulk
medium [see Fig. 3(a)]. Nonlinear propagation in the
effective medium under consideration is modeled
through the slowly varying envelope approach [32,44],
where the seed optical field is expressed as Eðr; tÞ ¼
Aðr⊥; zÞeik0ð

ffiffiffi
ϵb

p
z−ctÞn, r ¼ ðr⊥; zÞ is the position vector, n

is a unit vector accounting for the arbitrary linear polariza-
tion of the beam, and the optical envelope Aðz; r⊥Þ is
governed by

2ik0
ffiffiffiffiffi
ϵb

p ∂zAþ∇2
⊥Aþ k20½ϵeffðjAj2Þ − ϵb&A ¼ 0; ð1Þ

(see SM [32] for further details). Extended homogeneous
nonlinear modes can be excited by launching a seed
extended plane wave, and are calculated by setting
the ansatz AðzÞ ¼ A0eiβz in Eq. (1), where β ¼
ðk0=2

ffiffiffiffiffi
ϵb

p ÞfRe½ϵeffðjA0j2Þ& − ϵbg is the propagation con-
stant correction, while the mode amplitude A0 is fixed by
the condition Im½ϵeffðjA0j2Þ& ¼ 0.We solve Eq. (1) using the
Newton-Raphson method for several values of the gain
coefficent g0 [see Fig. 3(b)]. We find three types of extended
nonlinear modes departing from the trivial solution A0 ¼ 0:
Types I and II coexist in the bistable subcritical domain,
while type III exists only in the overcritical domain [see
Fig. 3(b), where subcritical or overcritical domains are
separated by the threshold gain coefficient g0 ≈
72 cm−1]. We further evaluate the stability properties of
these modes, finding that every extended mode is modula-
tionally unstable [32]. In addition, type II (III) extended
modes exist on top of a stable (unstable) background
A0 ¼ 0. Thus, nonlinear dynamics in subcritical or over-
critical domains leads to qualitatively different phenomena
[see Figs. 3(c) and 3(d)].
Discussion.—These results prelude the existence of

localized nonlinear modes with complex patterns indicating
that, under extended seed excitation, unstable homo-
geneous modes dynamically evolve into either (i) a series
of stable filaments for subcritical gain values [see Fig. 3(c)]
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FIG. 3. (a) Schematic of the system excitation: a pump beam
produces inversion of population that provides an effective gain
coefficient g0, while a seed beam launched in the disordered bulk
undergoes amplification through stimulated emission. (b) Exist-
ence curve of extended modes, showing their intensity I ¼
ð1=2Þϵ0cjA0j2 against the gain coefficient g0. (c),(d) Propagation
of perturbed extended modes: (c) type II for g0 ¼ 60 cm−1 and
(d) type III for g0 ¼ 85 cm−1. Graphene flakes are assumed to be
disks of diameter D ¼ 30 nm and density N ¼ 103 μm−3.
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or (ii) a chaoticlike spatial dynamics of unstable filaments
for overcritical gain values [see Fig. 3(d)]. In the context of
dissipative systems, these kinds of localized nonlinear
modes are commonly named dissipative solitons (DSs)
[45], as they involve an internal power flow enabling
stationary propagation. We further investigate the pro-
perties of these ð1þ 1ÞD light beams by setting the
ansatz Aðx; zÞ ¼ A0ðxÞeiβz in Eq. (1). The ensuing differ-
ential equation for A0ðxÞ is again solved numerically,
finding a set of bell-shaped DSs [32]. Analogous to
extended modes, we identify three types of localized
nonlinear modes: DS1 and DS2 coexist in the bistable
subcritical domain, while DS3 exists only in the overcritical
domain [see Fig. 4(a), where we plot their maximum
intensity Imax ¼ ð1=2Þϵ0cmax jA0ðxÞj2 and their width w
against g0 for fixed graphene flake densityN ¼ 103 μm−3].
We emphasize that the mode patterns are complex, so that,
for every localized mode, there is a peculiar internal power
flow enabling stationary propagation within an intensity-
dependent absorption or amplification environment [32].
We analyze mode stability over propagation by solving
Eq. (1) through the split-step fast-Fourier-transform
method embedding a fourth-order Runge Kutta routine,
finding that only DS2 modes are stable. In view of the
stability features of extended and localized modes, we

note that there exists only one single stable mode (DS2) for
every fixed value of g0 and N within the subcritical
domain. The spatial size and peak intensity of this unique
bell-shaped stable mode is fixed by g0 andN [see Fig. 4(a)].
Consequently, the mode features can be externally
manipulated by tuning the optical pump or the graphene
flake density [see Fig. 4(b), where we plot the mode
minimum width wmin and the corresponding g0 as a
function of N]. Note that the single-mode spatial width
can be tuned from a few tenths to several hundreds of
microns, while its spectral width is fixed by the resonant
gaining medium (for R6G used in our calculations the
mode spectral width is about 2 meV [33]). Excitation with
an extended seed leads to a collection of interacting
filaments [see Fig. 3(c)]. In contrast, the single-mode
regime emerges when the system is excited by a localized
Gaussian seed, which directly fixes the direction of
propagation. In Figs. 4(c) and 4(d), we plot the propagation
of an input Gaussian seed IðxÞ ¼ I0e−ðx=wÞ

2
with peak

intensity I0 ¼ 70 MW=cm2 and width w ¼ 70 μm for a
fixed gain coefficient g0 ¼ 55 cm−1 and for two different
graphene flake densities: Fig. 4(c) N ¼ 1000 μm−3 and
Fig. 4(d) N ¼ 900 μm−3. Interestingly, by manipulating N,
one can tune the system from seed amplification into a
stable single mode [Fig. 4(c)] to chaotic dynamics
[Fig. 4(d)].
This leads to the conclusion that the graphene-based

active random metamaterials under discussion enable
single-mode operation with spatial patterns determined
by the external optical pump (which tunes the gain
coefficient g0) and the density of graphene flakes. Our
results are based on realistic physical parameters of the
materials adopted and indicate that single-mode cavity-free
lasing can be achieved at the micrometer scale with current
technology.
Conclusion.—In summary, the extremely low-threshold

saturable absorption of graphene allows us to design an
active random metamaterial capable of sustaining single-
mode size- or shape-controlled laser beams. The external
pump intensity and the density of graphene flakes deter-
mine the regime of operation, which can be varied from
chaotic to stable single mode. Because the proposed
random medium is a disordered mixture of currently
available materials, it is promising as an inexpensive and
versatile platform for the design of cavity-free light
amplifiers and lasers.
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axis, dashed curves) against the gain coefficient g0 (N ¼
103 μm−3). (b) DS2 minimum width wmin (red curve) and
corresponding gain coefficient g0 (blue curve) plotted against
the graphene flake density N. (c),(d) Propagation of an input
Gaussian seed IðxÞ ¼ I0e−ðx=wÞ

2 with peak intensity I0 ¼
70 MW=cm2 and width w ¼ 70 μm naturally evolving into
(c) the stable DS2 mode with width w≃ 30 μm and peak
intensity Imax ≃ 0.3 GW=cm2 and (d) unstable chaotic dynamics
[g0¼55cm−1 with (c) N ¼ 1000 μm−3 and (d) N ¼ 900 μm−3].
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1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of
Science and Technology, 08860 Castelldefels (Barcelona), Spain and
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We provide additional information on graphene saturable absorption, the amplification properties of the active
medium (Rhodamine 6G), and the composite e↵ective response, as well as homogeneous and localized dissipative
modes and their stability. Additionally, we give details on our theoretical derivations and computational methods.

I. SATURABLE ABSORPTION OF GRAPHENE

We model light-induced out-of-equilibrium dynamics of two-dimensional massless Dirac fermions (MDFs) through
generalized Bloch equations (GBEs), which can be directly derived from the 2D Dirac equation for MDFs with
momentum p [1, 2]. In this approach, MDFs are let to interact with an external monochromatic electric field E(t) =
Re

⇥
E

0

e

�i!t

⇤
x̂ with angular frequency ! and polarization along the x̂ direction. The electromagnetic interaction is

introduced through the minimal coupling ⇡(t) = p + eA(t), where the MDF quasi-momentum ⇡(t) is temporally
driven by the potential vector A(t) = �

R
E(t0)dt0. The temporal dynamics of the p-dependent coherence �p(t) and

inversion of population np(t) is governed by GBEs, which in the eA(t) << h̄!/v

F

limit are explicitly given by

�̇p = �
✓

1

T

2

+ i!

0

◆
�p � ie

2p
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⇥
E

0

e

�i!t
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sin'np, (1)

ṅp = � 1
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1

(np + 1) +
2e

p

Re
⇥
E

0

e

�i!t

⇤
sin'Im�p, (2)

where !

0

= 2v
F

p/h̄, and the electron momentum is expressed in polar coordinates p = p(cos', sin'). Electron-hole
recombination processes are taken into account through the phenomelogical parameters T

1

, T

2

, which represent the
population decay and the coherence dephasing time-scales, respectively. In our calculations we assume T

1

= T

2

=
100fs. We obtain steady-state analytical solutions of Eqs. (1-2) by using the ansatz

�p = �+

p e
i!t + ��

p e
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,
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0

p +Re
⇥
n

⌦

pe
�2i!t

⇤
,

and solving the ensuing system of algebraic equations for �±
p , n

0

p, and n

⌦

p neglecting third-harmonic terms. In the
limit of vanishing Fermi energy and temperature, the total current density induced on the graphene is given by

J(t) = 2ev
F

g

s

g

v

(2⇡h̄)2
x̂

Z
2⇡

0

sin'd'

Z 1

0

p�p(t)dp,

where g

s

= 2 and g

v

= 2 are the spin and valley degeneracy factors. The graphene conductivity � is thus straight-
forwardly extracted from J = Re[�E]. We have numerically solved the above integrals for several light intensities
I = (1/2)✏

0

c|E
0

|2, and found good fitting with the following analytical expression for �(I):
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FIG. S1: Gain spectrum illustrating the instability growth coe�cient � against the small-amplitude perturbation wave-vector
q for type II (g0 = 60 cm�1) and III (g0 = 85 cm�1) modes. The instability occurs when � > 0. Graphene flakes are assumed
to be disks of diameter D = 30 nm and density N = 103 µm�3.

II. AMPLIFICATION OF THE ACTIVE MEDIUM

We consider externally pumped R6G as the gain medium. The optical response of R6G is modeled through the
traditional Bloch equations (BEs) of two-level systems with resonant angular frequency !

ba

and transition dipole
moment µ

ba

. The temporal dynamics of the density matrix coherence ⇢

ba

= r

ba

e

�i!t and population inversion
n

ba

= ⇢

bb

� ⇢

aa

under the external monochromatic driving field is governed by the BEs

ṙ

ba

= i(! � !

ba

)r
ba

� 1
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2
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� i
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E
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,

ṅ
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1

[neq
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� n
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]� 4

h̄

Im [µ
ba

E

0
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] ,

where n

eq

ba

> 0 is the equilibrium population inversion induced by the external pump, ⌧
1

and ⌧

2

are the characteristic
population decay and coherence dephasing times of R6G, respectively, and we adopt the rotating wave approximation.
Furthermore, we assume that R6G is operating at resonance (i.e., ! = !

ba

). Stationary solutions of the BEs are thus
directly found by setting ṙ

ba

= ṅ

ba

= 0. The R6G induced polarization is in turn given by P(t) = N

R6G

(µ⇤
ba

⇢

ba

+
µ

ba

⇢

⇤
ba

), where N

R6G

is the R6G density. Hence, the R6G susceptibility becomes

�

R6G

= �i

(g
0

/k)

1 + I/I

R6G

S

,

where I

R6G

S

' 150 MW/cm2 is the R6G saturation intensity [3]. The gain coe�cient g

0

depends linearly on the
equilibrium population inversion n

eq

ba

, so that it can be controlled through the external pump and can reach values as
large as g

0

' 400 cm�1 [4].

III. AVERAGED OPTICAL RESPONSE OF THE DISORDERED MIXTURE

The optical response of the system depends on its three underpinning constituents: embedding PMMA, externally-
pumped R6G, and randomly-oriented subwavelength graphene disks of diameter D = 30 nm. Graphene is routinely
exfoliated from graphite and dispersed in several solutions including dimethylformamide (DMF), which can also be
used to dissolve R6G and PMMA. We emphasize that the practical fabrication of such a disordered medium does
not involve advanced nano-fabrication techniques. PMMA contributes to the optical response with a background
dielectric constant ✏

b

' 2.23 at the operating wavelength. The polarizability of subwavelength randomly-oriented
graphene disks is calculated through a standard electrostatic approach [5], considering only the first dipolar resonance
tail:

↵

G

=
D

3

3/(2✏
b

)� 8i✏
0

cD/[��(I)]
,
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FIG. S2: Localized lasing modes. Three localized mode types are identified: DS1 and DS2 coexist in the sub-critical domain,
while only DS3 exists in the over-critical domain. (a) Intensity I(x) and (b) transverse phase �(x) profiles for the three di↵erent
localized mode types: DS1, DS2 (g0 = 55 cm�1), and DS3 (g0 = 75 cm�1). Arrows in (b) indicate the transverse power flow
of each mode. Graphene flakes are assumed to be disks of diameter D = 30 nm and density N = 103 µm�3.

which is well approximated by ↵

G

' ⇡(D/2)2a�
G

, where �

G

= i�(I)/(a✏
0

!), since graphene plasmons do not come
into play at the optical frequencies considered here. The total response of the system is thus calculated through the
Clausius-Mossotti e↵ective response theory

✏

e↵

� ✏

ext

✏

e↵

+ 2✏
ext

=
(2/3)N↵

G

3✏
ext

,

where the factor 2/3 accounts for the random orientation of graphene disks and ✏

ext

= ✏

b

+ �

R6G

. In the limit of
small graphene density, the Clausius-Mossotti expression reduces to ✏

e↵

(I) ' ✏

b

+ �

R6G

+ (2/3)f�
G

.

IV. NONLINEAR DISSIPATIVE DYNAMICS

Optical propagation of monochromatic waves inside the disordered amplifying medium is ruled by the double-curl
macroscopic Maxwell’s equations with nonlinear e↵ective constant ✏

e↵

(I):

r⇥r⇥E = k

2

0

✏

e↵

(I)E.

By taking the ansatz E(r, t) = A(r?, z)eik0(
p
✏bz�ct)

n̂, where n̂ is the arbitrary polarization unit vector, and adopting
the slowly varying envelope approach (SVEA) |@

z

A| << k

p
✏

b

|A|, r ·E ' 0, we can neglect second-order derivatives
of the envelope @

2

z

A, leading to Eq. (1) of the main paper. The SVEA ceases to be valid for optical beams with size
comparable to the wavelength, in which case the longitudinal component of the field becomes relevant. However, we
never approach this limit in our calculations, and the SVEA remains fully valid for the results presented here.

Extended homogeneous nonlinear modes are calculated by setting A(z) = A

0

e

i�z, where � =
(k

0

/2
p
✏

b

)
�
Re

⇥
✏

e↵

�
|A

0

|2
�⇤

� ✏

b

 
and the amplitude A

0

is fixed by the condition Im[✏
e↵

�
|A

0

|2
�
] = 0, which is numer-

ically solved through the Newton-Raphson method. We find a sub-critical bifurcation of extended nonlinear modes
from the trivial vacuum A

0

= 0 and identify three types of modes: Type I and II coexist in the bi-stable sub-critical
domain, while Type III exists only in the over-critical domain [see Fig. 3(a) in the main paper]. The stability of
extended modes against small-amplitude perturbing waves with amplitude �A and wave-vector q is evaluated by
setting

A =
h
A

0

+ �A

1

e

(�+i⌥)z+iqx + �A

⇤
2

e

(��i⌥)z�iqx

i
e

i�z

,

where � represents the instability growth rate and ⌥ is a propagation constant shift. Inserting this expression in Eq.
(1) of the main paper, and linearizing with respect to the small-amplitudes �A

1

, �A

2

, we find a linear homogeneous
algebraic system of equations, whose complex eigenvalues � + i⌥ are calculated numerically for every wave-vector q.
Positive/negative growth rates � indicate instability/stability against small-amplitude perturbations. We find that
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Type I modes are always unstable, while Type II and III modes are unstable only for a finite range of q [see Fig. S1,
where we plot the maximum instability growth coe�cient � against q]. Besides, Type II/III extended modes exist
on top of a stable/unstable background A

0

= 0, respectively. Thus, nonlinear dynamics in sub-critical/over-critical
domains leads to qualitatively di↵erent phenomena [see Figs. 3(c),(d) in the main paper].

Localized nonlinear modes are calculated by setting the ansatz A(x, z) = A

0

(x)ei�z in Eq. (1) of the main paper.
The ensuing di↵erential equation for A

0

(x) is transformed into a nonlinear system of algebraic equations by discretizing
the spatial variable x = x

m

and the second order derivative @

2

x

A(x) = [A(x
m�1

)� 2A(x
m

)+A(x
m+1

)]/(x
m

�x

m�1

)2

with m = 1, 2, ..,M , and by applying homogeneous boundary conditions A(x
1

) = A(x
M

) = 0. This nonlinear system
of algebraic equations is then numerically solved through the Newton-Raphson method. In the context of dissipative
systems, these kinds of localized nonlinear modes are commonly named dissipative solitons (DSs) [6], as they involve
an internal power flow enabling stationary propagation. We also find a sub-critical bifurcation from the trivial vacuum
A

0

(x) = 0 for these localized modes and identify three types of them: DS1 and DS2 coexist in the bi-stable sub-
critical domain, while DS3 exists only in the over-critical domain [see Fig. 4(a) in the main paper, where we plot

their maximum intensity I

max

= (1/2)✏
0

c max|A
0

(x)|2 and their width w = 2[
R
+1
�1 x

2|A
0

(x)|2dx/
R
+1
�1 |A

0

(x)|2dx]1/2
against g

0

for fixed graphene flake density N = 103 µm�3]. Intensity profiles of DS1, DS2, and DS3 modes are plotted
in Fig. S??(a), while their x-dependent phase � = atan[ImA

0

(x)/ReA
0

(x)] is shown in Fig. S??(b). Interestingly,
owing to the transverse inhomogeneous phase, for every localized mode there is a peculiar internal power flow enabling
stationary propagation within an intensity-dependent absorption/amplification environment [see Fig. S??(d)].
The stability of localized modes is studied in propagation. All propagation plots have been obtained by solving Eq.

(1) of the main paper through the split-step fast-Fourier-transform method embedding a fourth-order Runge Kutta
routine.
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