
Dichroism in the Interaction between Vortex Electron Beams, Plasmons, and Molecules

A. Asenjo-Garcia1 and F. J. García de Abajo1,2,*
1ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
2ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain

(Received 12 December 2013; revised manuscript received 8 March 2014; published 6 August 2014)

We study the transfer of orbital angular momentum between vortex electron beams and chiral samples,
such as staircase plasmonic nanostructures and biomolecules. Inelastic electron scattering from these
samples produces large dichroism in the momentum-resolved electron energy-loss spectra. We illustrate
this phenomenon with calculations for chiral and nonchiral clusters of silver spheres using both focused
and extended electron beams, which exhibit ∼10% difference between channels of opposite angular
momentum. In addition to its fundamental interest, this remarkably high dichroism suggests a way of
spatially resolving chiral optical excitations, including dark plasmons. We also predict a dichroic response
when probing a chiral biomolecule, which suggests the use of these electron beams for resolving different
enantiomers.
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Vortex electron beams, which are known to exist as
propagating solutions of the Schrödinger equation in
free space [1], have been recently generated by passing
electron beams through different types of phase masks
[2–5] in order to select specific values of the orbital angular
momentum (OAM). Following a previous suggestion [1,6],
electron vortices have been additionally generated by
exploiting the interaction between an electron beam and
an effective magnetic monopole [7]. These advances have
stimulated innovative ways of using electron beams to
interact with nanostructured materials. For instance, elec-
tron vortices possess a magnetic moment proportional to
the OAM that can make them excellent probes of core-level
magnetic transitions. Recently, many works have analyzed
the range of applicability of these vortices for performing
magnetic chiral dichroism [8–10]. A similar effect has been
proposed for mapping plasmons in nanostructures [11].
Additionally, the interaction with a longitudinal magnetic
field has been predicted to produce Faraday rotation on
the electron vortex [12]. This configuration has been also
proposed as a way to observe the Aharonov-Bohm effect
[13]. Chiral electron beams have even been postulated as
suitable tools for inducing and controlling mechanical
rotation of nanoparticles [14,15].
Electron vortex beams can be equally used to characterize

the optical response of chiral (mirror-symmetry-breaking)
structures. Traditionally, circularly polarized light, which
carries spin angular momentum, has been used to probe
chiral samples, as they produce polarization-dependent
absorption cross sections (i.e., circular dichroism [16,17]).
However, OAM dichroism cannot be observed when prob-
ing with optical Laguerre-Gauss beams [18–22], clearly
revealing that chiral light-matter coupling is exclusively
mediated by the intrinsic angular momentum of light. In
contrast, electrons can undergo chiral transfer of OAM [20].

In this Letter, we demonstrate the chiral exchange of
OAM between vortex electron beams and two different
kinds of chiral samples: plasmonic nanostructures and
biomolecules. In particular, we predict large differences
in the intensity of opposite OAM components of electrons
that are inelastically scattered from chiral clusters formed
by closely arranged silver nanospheres, both under broad
and focused vortex beam illumination. The latter can
be used to map plasmonic chiral modes with high spatial
resolution. We also predict significant dichroism in the
electron energy-loss signal produced by α-helix molecules.
Energy loss probability.—We intend to study the prob-

ability that an electron prepared in incident state i under-
goes inelastic transitions to final states f, accompanied by a
net transfer of OAM and energy to a chiral sample. The
transition rate is given by [23]

dΓfi

dt
¼

Z
dω

dΓfiðωÞ
dt

;

where

dΓfiðωÞ
dt

¼ 2ℏe2

ω2m2
e

Z
d3rd3r0ψfðrÞψ$

fðr0Þδðεf − εi þ ωÞ

× ½∇ψ$
i ðrÞ' · ImfGðr; r0;ωÞg · ½∇ψ iðr0Þ'; ð1Þ

is the spectrally resolved rate, ℏεi and ℏεf are the initial and
final electron energies, and Gðr; r0;ωÞ is the electromag-
netic Green tensor, which contains the fully retarded
response of the sample (see the Supplemental Material
[24]). The wave functions of energetic beam electrons can
be well described as [23]

ψ i;fðrÞ ¼
1ffiffiffiffi
L

p eipzi;fzψ i;f⊥ðRÞ; ð2Þ
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where we assume a plane wave behavior along the beam
direction z, L is the quantization length along that direction,
and the dependence on transversal coordinates R ¼ ðx; yÞ
is separated in ψ i;f⊥ðRÞ. The low-kinetic energies associated
with the latter allows us to approximate the frequency
transfer by ω ¼ εi − εf ≈ qzv (nonrecoil approximation),
where qz ¼ pzi − pzf is the wave vector transfer and v is the
electron velocity (v ¼ 0.55c for the 100 keV electrons
considered in this work). Using Eq. (2) in Eq. (1), summing
over final longitudinal wave vectors pzf, and dividing by the
electron current v=L derived from ψ i, we find the probability
that an electron undergoes a transition between ψ i⊥ and ψf⊥
transversal states to have the form (see the Supplemental
Material [24])

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv=cÞ2

p
, is a generalized polarizability

matrix describing the response of the sample (see below),
and N is an electromagnetic matrix element.
Chiral plasmonic cluster.—Electron beams are valuable

tools to spectrally and spatially map nanoscale plasmons,
the collective oscillations of conduction electrons in metals
[29,30]. Here, we consider plasmons in chiral clusters
formed by non-mirror-symmetric geometrical arrangements
of metallic spherical nanoparticles [31,32]. Four spheres are
the minimum required to produce a chiral cluster [33]. In
particular, we focus on a staircase tetramer and its mirror
image, along with a nonchiral planar trimer. For simplicity,
the particles are assumed to be small enough as to describe
them through a scalar electric polarizability αðωÞ, which
turns out to be a good approximation for the 30 nm silver
spheres separated by 5 nm gaps that we study below (see
Fig. S2 in the Supplemental Material [24]). Simultaneously,
the particle size and spacings are large enough to allow us to
describe them using local classical theory [34]. We obtain
αðωÞ using a tabulated dielectric function for silver [35]. For
such clusters, we have

where G0
jj0 describes the retarded interaction between particle

dipoles at positions rj and rj0 , and we use matrix notation
with indices running over the three Cartesian directions
for each and all of the spheres. The electromagnetic
matrix element associated with particle j is then (see the
Supplemental Material [24])

Nj ¼ eiqzzj
Z

d2Rψ$
f⊥ðRÞψ i⊥ðRÞ

×
"
uj

jujj
K1

#
qzjujj
γ

$
þ ẑ

i
γ
K0

#
qzjujj
γ

$%
;

where K0 and K1 are modified Bessel functions of the
second kind and uj ¼ R −Rj. In what follows, we present
numerical results obtained by evaluating these expressions
for either incident electron plane waves (uniform ψ i⊥) or
Gaussian beams (ψ i⊥ ∝ e−R

2=Δ2
). We consider transitions to

a vortex electron carrying a definite amount of OAM ℏmf
[i.e., ψf⊥ ∝ eimfφJmf

ðPfRÞ], characterized by an orbital
momentum number mf and transversal wave vector Pf (see
the Supplemental Material [24] for further details).
Inspired by the concept of circular dichroism in optics,

we define dichroism in electron energy-loss spectroscopy
(EELS) as the difference in the loss probability of electron
vortices with opposite OAM (e.g., (ℏ). We envision an
experiment in which the orbital number mf can be pre
(post)-selected by means of an OAM analyzer placed
before (after) the sample. Although the design and fab-
rication of OAM analyzers still pose a tremendous exper-
imental challenge, excellent progress has been recently
made in this direction [5,36–38]. For simplicity, we study
incident beams without a net OAM interacting with chiral
samples and resolved in OAM components by a post-
selection analyzer, although the present work can be
trivially extended to deal with pre-selection analyzers. In
particular, we first consider a 100 keV plane-wave electron
passing through a chiral sample and subsequently entering
an OAM analyzer, which deflects different mf components
along different outgoing directions [see Fig. 1(a)]. Energy
loss spectra are recorded for several mf’s through an angle-
resolved spectrometer. In the Fourier plane, the transmitted
mf ¼ (1 signals display a characteristic annular pattern, in
contrast to the more intense mf ¼ 0 disklike angular map.
We obtain the mf-resolved loss cross section σmf

ðωÞ
for the incident plane wave by multiplying the transition
probability by the wave front area (see the Supplemental
Material [24]). The spectrally resolved cross section exhibits
complex features with several peaks, corresponding to
the excitation of plasmons in the cluster [Fig. 1(b)]. The
mf ¼ (1 spectra show slightly different intensity for each of
the spectral features. This prompts us to define the absolute
and relative degrees of dichroism associated with the orbital
number mf as σmf

− σ−mf
and ðσmf

−σ−mf
Þ=ðσmf

þσ−mf
Þ,

respectively. For the clusters under consideration, these
quantities decrease with increasing mf [see Fig. 1(b)].
We study the mf ¼ 1 dichroism produced by different

clusters in Fig. 2. The relative electron dichroism reaches
up to ∼10%, which is remarkably high compared with
typical values in its optical counterpart [16,17]. As
expected, the effect changes sign upon mirror reflection
of the sample, while a cluster formed by only three particles
lying on a plane normal to the beam does not produce
dichroism at all, as it is not seen as chiral by the electron
[Figs. 2(a), 2(b)]. In contrast, a net dichroism effect is
observed for the trimer by tilting it [Fig. 2(c)], so that
the electron sees again a staircaselike structure along
the direction of electron propagation. In optics, this
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phenomenon is known as extrinsic dichroism, which is
produced when oriented nonchiral molecules form a chiral
triad with the light wave vector [39–41]. This is precisely
what happens when the normal of the plane that contains
the cluster is tilted with respect to the electron incidence
direction, and once more, the effect changes sign upon
mirror reflection of the sample. However, this apparent
chirality is erased when averaging over all cluster orienta-
tions. It is important to stress that the fraction of inelas-
tically scattered electrons that transfer OAM is actually
large, as shown in Fig. 2(d) by comparing mf ¼ (1 and
mf ¼ 0 components.
Particle size and separation in the clusters play an

important role in determining the strength of the chiral
coupling to the electron (see Fig. S3 in the Supplemental

Material [24]). Both the EELS intensity and the dichroism
increase with particle size, but the latter is reduced with
particle separation, as close interaction between the spheres
is required to sustain a strong chiral plasmon that extends
over the entire cluster.
The coupling to different chiral modes of the sample is

also strongly affected by the relative position and alignment
between the cluster and the vortex generator (see Fig. S3 in
the Supplemental Material [24]). More precisely, the origin
of electron OAM (i.e., the origin of azimuthal angles φ)
depends on the design and position of the OAM analyzer.
This poses an experimental challenge to measure the
dichroic signal. If the planes of the sample and the
OAM analyzer are taken to be conjugated in the electron
optics setup, with a 1∶100 demagnification factor for the
analyzer, relative alignment requires sub-micron-scale
displacements of the analyzer to produce nanometer-scale
displacements at the conjugated sample plane.
Due to conservation of angular momentum, the OAM

transferred by the electron produces a mechanical torque
on the cluster, which can be separated into two different
contributions: intrinsic torque acting on each individual
particle and extrinsic torque acting on the cluster as a
whole relative to the origin of electron OAM. Additionally,
cathodoluminescence emission can take a net amount of
angular momentum that needs to be included in this
balance. As we show in the Supplemental Material [24],
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FIG. 2 (color online). (a) Dichroism betweenmf ¼ (1 compo-
nents in the spectrally resolved inelastic cross section of 100 keV
electrons for different clusters of 30 nm silver spheres with gaps of
5 nm (see insets). The planar trimer does not exhibit any dichroism.
(b) Same as (a), normalized to the sum ofmf ¼ (1 cross sections.
(c) Extrinsic dichroism displayed by the trimer when it is tilted
with respect to the direction of electron propagation. (d) Partial
mf ¼ (1 inelastic cross sections normalized to the mf ¼ 0
transmitted beam component for different electron energies in
the left-handed tetramer [upper inset in (a)]. The inset of (d) shows
the maximum of this ratio (left, red curve) and the energy loss at
which this happens (right, blue curve) as a function of electron
energy. The origin of OAM is the same as in Fig. 1
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FIG. 1 (color online). (a) Sketch of the system under consid-
eration. A 100 keV electron plane wave impinges on a cluster
(left-handed tetramer) consisting of four 30 nm silver spheres
separated by 5 nm gaps. The electron is subsequently passing
through an orbital angular momentum (OAM) analyzer that splits
the beam into different components mf along different trans-
mission directions. These components are independently energy-
analyzed by an angle-resolved spectrometer. The origin of OAM
is made to coincide with the position of the electron arrow
depicted in (a). The angular distribution of different mf compo-
nents are represented at the bottom for a 3.5 eV energy loss.
For visualization purposes, the intensities of the mf ¼ (1 and
mf ¼ (2 components are multiplied by factors of 5 and 10,
respectively. (b) Energy-loss mf-resolved cross-section spectra
under the conditions of (a).
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neglecting retardation, the increase in angular momentum
(intrinsicþ extrinsic) produced by the self-consistent
electromagnetic field resulting from interaction with the
electron exactly accounts for the electron momentum
transfer (see Fig. S4 in the Supplemental Material [24]).
The excellent spatial resolution of electron microscopes

for visualizing optical near fields [23,42,43] can be used to
study the chirality associated with each of the plasmon
features. Remarkably, we find the relative degree of
dichroism to display a sign and magnitude that are rather
independent of the lateral width of the electron beam,
although the absolute effect quickly vanishes for beams
that are much narrower than the size of the plasmon modes
(see Fig. S1 of the Supplemental Material [24]).
Chiral molecule.—Many biomolecules such as proteins

and nucleic acids are chiral. Their optical response can be
characterized by nonorthogonal electric (polar vector) and
magnetic (axial vector) dipoles that, combined, break mirror
symmetry [44]. In particular, the generalized polarizability
of a chiral molecule contains electric (αEE), magnetic
(αMM), and magnetoelectric (αME ¼ −αTEM, due to recipro-
city [45]) components that are combined in the matrix

Dichroism arises from the off-diagonal elements. The
electromagnetic matrix element N ¼ ½NEE;NME' also con-
sists of two different components,

NEE ¼
Z

d2Rψ$
f⊥ðRÞψ i⊥ðRÞ

×
"
u0

ju0j
K1

#
qzju0j

γ

$
þ ẑ

i
γ
K0

#
qzju0j

γ

$%
;

NME ¼ v
c

Z
d2Rψ$

f⊥ðRÞψ i⊥ðRÞK1

#
qzju0j

γ

$#
ẑ ×

u0

ju0j

$
:

Remarkably, the ME crossed term is proportional to the
ratio between the electron and light velocities, therefore
suggesting that higher-energy electrons are better suited to
study chiral molecules.
In Fig. 3 we study σ1 (left panels) and the dichroism

jσ1 − σ−1j (right panels) as a function of energy loss for
a model point structure (upper panels) and an α-helix
molecule (lower panels). They are both considered to be
randomly oriented and placed a distance R0 apart from the
origin of OAM. The model structure has a single chiral
resonance of frequency ω0, spectral width γ0, and associated
electric and magnetic dipole moments p andm, respectively.
The maxima of σ1 and jσ1 − σ−1j are normalized to yield the
universal curves shown in Figs. 3(a), 3(b), which only depend
on electron energy andω0R0=vγ. These results can be applied
to molecules and metamolecules [45] by simply plugging
their corresponding spectral parameters. It is common to have
jmj ≪ jpj, so that the cross section is roughly proportional to
jpj2, whereas the dichroism scales as jm · pj. Interestingly,

the absolute dichroism diverges logarithmically with decreas-
ing R0, thus suggesting a possible approach towards ultra-
sensitive detection of chirality consisting in lowering R0 by
employing a highly demagnified OAM analyzer.
Results for the α-helix biomolecule—a common secon-

dary structure of proteins—are presented in Figs. 3(c), 3(d)
using fitted parameters to model its three main UV reso-
nances (see the Supplemental Material [24]) and taking
R0 ¼ 1 nm. The universal curves obtained for the model
structure provide a reasonable description of the spectra
associated with each of these resonances. Interestingly, the
calculated dichroism has a similar magnitude and profile as
the optical dichroism that is obtained by replacing σ(1 by the
extinction cross section of right (þ1) and left (−1) circularly
polarized light [Fig. 3(d)]. In practice, electron dichroism
could be measured in molecular ensembles, which we
predict to produce loss intensities comparable with those
measured for nanoparticle plasmons [23] when the electrons
are passing ∼1 nm apart from a few tens of molecules.
Concluding remarks.—We predict large transfers of

orbital angular momentum and a remarkably high degree
of dichroism in the inelastic interaction of electron beams
with chiral structures. Unlike light, electrons can engage
in dichroic transfer of orbital angular momentum, which
provides an extra tool for probing intrinsic and extrinsic
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FIG. 3 (color online). (a),(b) Normalized maximum of the
partial inelastic cross section σ1 (a) and the dichroism
jσ1 − σ−1j (b) for a randomly oriented model point structure
characterized by a chiral excitation of frequency ω0, width γ0, and
associated electric and magnetic dipole moments p and m [see
inset to (b)]. The cross section and dichroism spectra follow a
Lorentzian profile [see inset to (a)]. The origin of OAM is
displaced a distance R0 with respect to the structure. The vertical
axes are normalized to yield universal curves that only depend on
the electron energy (see legend) and ω0R0=vγ. (c),(d) Partial
inelastic cross section (c) and normalized dichroism (d) for an
α-helix, parametrized as described in the Supplemental Material
[24]). The optical dichroism with circularly polarized light is
shown for reference. Different electron energies are considered
with the same color code throughout the figure.
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rotational degrees of freedom. Combined with the spatial
resolution of electron microscopes, this can be used to map
different chiral modes in plasmonic structures, which are
important elements of chiral metamaterials. The dichroism
signal changes sign when mirror imaging the sample, and
it disappears in systems that have mirror symmetry with
respect to a plane perpendicular to the beam direction. The
strength of the absolute dichroism is strongly dependent
on the degree of focusing of the electron beam, and it is
maximized when the beam size is comparable to the
extension of the probed chiral mode. We also demonstrate
that electron vortex beams can resolve the handedness of
chiral biomolecules, which has great potential for biologi-
cal and pharmaceutical studies.
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I. CHIRAL ARRANGEMENT OF A CLUSTER OF NANOPARTICLES

A. Inelastic electron transition probability

The rate at which a beam electron undergoes transitions from an initial state i to final states f is given by [1]
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is the spectrally resolved rate, which is a function of energy loss ~!. The coupling to the sample is mediated by the
electromagnetic 3 ⇥ 3 Green tensor G (see Appendix B). Beam electrons can be well described using plane waves
along the direction of the beam z, with the electron wave functions decomposed as

 (r) =
1p
L
eipzz ?(R),

where L is the quantization length along z, whereas  ?(R) contains the dependence on the transversal plane coordi-
nates R = (x, y). In what follows, we consider beams of small divergence angle, so that the transversal momentum
components P associated with  ? are small compared with p

z

(i.e., |p
z

| � |P|).
We sum over final plane wave states and separate this sum into longitudinal and transversal components as
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and we have neglected electron recoil [1] [i.e., the transferred frequency is approximated as ("
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) ⇡ (p
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)v].
We further neglect the gradient of the electron wave function along the transversal direction and divide by the electron
beam current v/L in order to obtain the probability per electron. We find
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and we have dropped the initial-state subindex i for simplicity. From here, using the expression for the Green tensor
of a cluster of small spheres derived in Appendix B [Eq. (B7)], we obtain
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where � = 1/
p
1� (v/c)2. Finally, the probability for the electron to undergo a transition between the initial and

final transversal states  
i? and  

f? reduces to
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where the components of the vector N, which are labeled by the three Cartesian directions for each and all of the
spheres j, are given by
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Notice that G0 is a 3n⇥ 3n matrix for a cluster consisting of n particles, whereas N has dimension 3n⇥ 1.

1. Transitions from a plane-wave to a vortex

For an electron plane wave propagating along the direction z, we can write the initial transversal wave function as

 
i?(R) =

1p
A
,

where A is the quantization area in the x-y transversal plane. We now consider a complete orthonormal basis set of
transversal plane waves labeled by wave vectors P
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, which can be decomposed as
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,'Pf ). As we are only interested
in transitions to a given component of final angular momentum m
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, it is convenient to use the complete set of final
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in which each state is characterized by a particular choice of P
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. With this final state representation, the
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The angular integral of the z component of this vector reduces to
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are modified Bessel functions. Likewise, the remaining
transversal components involve
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,'
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) are the polar coordinates of R
j

. For the incident plane wave under consideration, it is useful to define
the loss cross-section, which we separate in di↵erent transferred frequency components as
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We obtain the cross section as the transition probability per electron multiplied by the transversal area A, that is,
�
mf (!) = A�(!). A more convenient expression is derived by summing over final transversal wave vectors P
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using
the customary prescription
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Finally, we decompose the cross section in transversal momentum components as
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Further analysis and results of this section are presented in the main paper.

2. Transitions from a focused Gaussian beam to a vortex

A transversally focused beam is well represented by a Gaussian wave function
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We consider again the final vortex states of Eq. (5) and concentrate on a specific final angular momentum number
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. Following the same procedure as in Sec. IA 1, we find that the loss probability reduces to
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where the vector M is still given by Eq. (6) with an appropriate redefinition of the functions
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FIG. S1: Dichroism for a focused electron beam. (a,b) Absolute (a) and relative (b) degrees of dichroism for Gaussian beams
of exp(�R2/�2) profile with di↵erent values of the FWHM= 2

p
ln 2� ⇡ 1.4�. The position and orientation of the beam

relative to the sample is shown in the inset of (c). The origin of orbital angular momentum (OAM) is made to coincide with
the center of the electron beam. (c,d) Energy loss probability (upper density plots) and dichroism (lower plots) distributions
as a function of beam position for FWHM= 1nm and two di↵erent loss energies, corresponding to features A and B in (b).
The electron energy is 100 keV. The cluster is made of 30 nm silver spheres separated by 5 nm gaps.

Finally, the wave-vector resolved probability, defined through

�
mf (!) =

Z
d2P

f

�
mf (Pf

,!),

reads

�
mf (Pf

,!) =
4e2q2

z

⇡2~�2v2�2

Im

⇢
M+ · 1

↵�1 � G0

·M
�
.

By analogy to the definitions of the main paper, where we use the cross section, we now define the degree of
dichroism with focused beams using the probability given by Eq. (8). We show some calculated spectra for incident
Gaussian beams of di↵erent full width at half maximum (FWHM) and m

f

= 1 in Fig. S1(a,b). Selected maps of
the EELS intensity (upper plots) and the dichroism (lower plots) as a function of beam position reveal that both
of these quantities are enhanced at the particle gaps [Fig. S1(c,d)]. However, the dichroic signal is more delocalized
and changes sign when moving from the gaps to other neighboring regions of the cluster. The net orbital angular
momentum transfer is thus rather sensitive to the position of the beam relative to the sample.

B. Multipolar versus dipolar response

The validity of the dipolar approximation used here to describe the particles can be questionable when multipo-
lar contributions become important at short separations. We show that the dipolar approximation is qualitatively
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correct by examining light extinction cross-sections and circular dichroism spectra, for which we perform converged
electromagnetic simulations with full inclusion of all multiples up to a high order using a multiple elastic scattering of
multipolar expansions (MESME) approach [2]. In particular, considering 30 nm silver spheres, Fig. S2 shows that for
surface-to-surface distances as small as 5 nm (black curves) the agreement between multipolar and dipolar calculations
is qualitatively reasonable and becomes quantitatively good for separations of 10 nm (red cuves).
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FIG. S2: Left circularly polarized light extinction cross-section (a), dichroism (b), and normalized dichroism (c) as a function
of photon enegy for the cluster shown in the inset of (a) and two di↵erent surface-to-surface distances d. Light propagates
along the direction of the blue arrow. Continuous (broken) curves correspond to multipolar (dipolar) calculations. The clusters
consist of 30 nm silver spheres.

C. Influence of relevant parameters on electron dichroism

We present additional results showing the dependence of the dichroic signal on various parameters for an extended
plane-wave electron interacting with a staircase tetramer arrangement of nanospheres [see inset of Fig. S3(a)]. In
particular, the dependence on the material, particle radius, and separation between particles is analyzed in Fig.
S3(a)-(c). The dichroism for silver spheres is considerably large compared with gold particles [Fig. S3(a)] because
silver is a less lossy material. Additionally, the dichroism exhibits a steep increase in magnitude with particle size [Fig.
S3(b)], and a decrease with particle separation [Fig. S3(c)], in agreement with the intuitive idea that larger structures
can transfer a bigger amount of angular momentum, provided the coupling between spheres is su�ciently strong. We
discuss the e↵ect of the position of the orbital angular momentum (OAM) analyzer relative to the sample in Fig.
S3(d). In these calculations, the electron beam is centered at the origin of OAM. This center is essentially determining
where the origin of 2D angular momentum has to be taken [i.e., the point with respect to which the azimuthal angle
' is measured when specifying a given orbital angular number m associated with an exp(im') electron wave function
dependence]. The planes of the sample and the analyzer are taken to be conjugated in the electron optics setup,
although the analyzer is generally demagnified in actual experiments, so that sample/analyzer alignment requires
sub-micron-scale displacements of the analyzer corresponding to nanometer-scale displacements at the conjugated
sample plane.

D. Mode decomposition in the non-retarded limit

In the non-retarded limit, Eq. (1) reduces to [1]
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where the coupling to the sample is mediated by the induced screened interaction W ind. Working in frequency space
!, the electrostatic screened interaction W (r, r0,!) is defined as the electric potential produced at r by an external
point charge at r0, and for a cluster consisting on n particles, it is given by

W ind(r, r0,!) = �T(r)+ · 1

↵�1(!)� G0

·T(r0), (9)
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FIG. S3: (a-c) Influence of cluster material (a), particle size (b), and separation between particles (c) on the dichroism produced
on a plane-wave electron upon interation with a staircase chiral tetramer arrangement of spheres [see inset in (a)]. (d) Dichroism
for di↵erent positions of the OAM analyzer relative to the tetramer. Each spectral curve corresponds to a di↵erent position of
the analyzer center, as indicated by a dot of the same color in the inset. The following default parameters are assumed, unless
otherwise specified (see legends): 100 keV electrons, 15 nm particle radius, and 35 nm center-to-center particle spacing. In (a-c)
the analyzer is at the position of the electron arrow of the inset to (a), which corresponds to the dark blue dot of the inset to
(d) (1 nm apart from the sphere surface, same as in Figs. 1 and 2 of the main paper).

where the components of the vector T run over the three Cartesian directions for each and all of the spheres j and
are given by

T
j

(r) =
r� r

j

|r� r
j

|3 = r
j

1

|r� r
j

| .

Equation (9) can be derived in a similar way as its retarded counterpart (see Appendix B). Likewise, the non-
retarded Green tensor G0 is given by the k ! 0 limit of Eq. (B3). As G0 is real and symmetric, its eigenvectors form
an orthonormal basis set, each of them defining a mode of the system. The energy loss su↵ered by the electron can
then be separated as the sum of the contributions from the resulting 3n modes. Using matrix notation

G0 · p
l

= µ
l

p
l

,

where p
l

and µ
l

are the real eigenvector and eigenvalue of mode l, Eq. (9) can be recast into

W ind(r, r0,!) = �
X

l

T(r)+ · p
l

1

↵�1(!)� µ
l

p+

l

·T(r0).

After some algebra, the loss probability reduces to

�(!) =
e2

⇡~v2
X

l

Im

⇢
1

↵�1(!)� µ
l

�X

f?

|N
l

|2,

where

N
l

=

Z
d3r eiqzz ⇤

f?(R) 
i?(R) p+

l

·T(r) =
1

⇡

X

j

p
l,j

·r
j

eiqzzj
Z

d2R

Z
d2Q

e�iQ·(R�Rj)

Q2 + q2
z

 ⇤
f?(R) 

i?(R).

Finally, for a transition from an incident plane wave to a m
f

vortex beam, the inelastic cross-section reduces to

�
mf (!) =

8e2

~v2
X

l

Im

⇢
1

↵�1(!)� µ
l

�Z 1

0

P
f

dP
fh

P 2

f

+ q2
z

i
2

|M
l

(P
f

)|2,

where

M
l

(P
f

) =
X

j

p
l,j

·r
j

⇥
e�imf'jeiqzzjJ

mf (Pf

R
j

)
⇤

=
X

j

e�imf'jeiqzzj

P
f

J 0
mf

(P
f

R
j

)p
l,j

· R̂
j

� im
f

R
j

J
mf (Pf

R
j

)p
l,j

· '̂
j

+ iq
z

J
mf (Pf

R
j

)p
l,j

· ẑ
j

�
.



8

(a) Retarded
Non-Retarded

e-

m
1-m

-1
(n

m
2  e

V
-1
)

(c) (d)(b)

Energy (eV)
3 3.4 43.2 3.6 3.8

Energy (eV)
3 3.4 43.2 3.6 3.8

Energy (eV)
3 3.4 43.2 3.6 3.8

Energy (eV)
3 3.4 43.2 3.6 3.8

-6

-4

-2

0

4

2

6

m
1(

nm
2  e

V
-1
)

0

5

10

15

20

-10

-5

0

5

10

15

<o
z�ƫ

(n
m

2  e
V

-1
)

0

5

10

15

20
Total
Extrinsic
Intrinsic

�m
1- m

-1
)/�
m

1+
m

-1
) (

%
)

FIG. S4: (a) Retarded and non-retarded dichroism for the cluster shown in the inset. (b,c) Non-retarded calculation of the
inelastic cross-section (b) and the dichroism (c). The black curve corresponds to the total result, while the contributions of
individual plasmon modes are shown in di↵erent colors. The insets in (c) illustrate the dipole orientations for two of these
modes. The incident electron is a 100 keV plane wave, while the cluster is made of 30 nm silver spheres separated by 5 nm
gaps. (d) Total, extrinsic, and intrinsic z-component of the non-retarded torque, normalized to yield cross-section units. We
consider transitions from the incident plane wave to a m = 1 vortex in all cases.

We compare retarded and non-retarded calculations in Fig. S4(a). Although we present retarded simulations in the
main paper, the non-retarded theory is qualitatively correct, so we use it in next section to analyze the transfer of
angular momentum to the sample. Incidentaly, many modes contribute to both the energy loss and the dichroism,
thus resulting in a non-trivial dichroic signal that cannot be ascribed in general to specific dominant modes [see Fig.
S4(b,c)].

E. Mechanical transfer of linear and angular momentum to the sample

The torque and force exerted by the electron on the cluster can be calculated from the Maxwell stress tensor [1].
We summarize the resulting expressions when applied to dipolar particles in what follows. The torque contains both
extrinsic and intrisic contributions,

⌧ (!) =
X

j

⌧ i

j

(!) + ⌧ e

j

(!).

The intrinsic torque acting on particle j, which makes that particle spin around its own axis, reduces to

⌧ i

j

(!) =
1

⇡


Re

�
p
j

⇥E⇤
j

 
+

2k3

3
Im

�
p
j

⇥ p⇤
j

 �
,

whereas the extrinsic component, which contributes to rotations of the cluster as a whole, is

⌧ e

j

(!) = r
j

⇥ F
j

(!).

Also, the force on particle j can be written as

F
j

(!) =
1

⇡

X

�=x,y,z

Re
�
p
j,�

rE⇤
j,�

 
.

In these expressions, p
j

is the 3D dipole vector of particle j, which corresponds to component j of Eq. (B5), whereas

E
j

(!) =
X

j

0

✓
1

1� ↵G0

◆

jj

0
·Eext

j

0

and Eext

j

0 is the external electron field. The latter is computed from Eq. (B6) using the electron current

j(r,!) =
2⇡i~e
m

e

 ⇤
f

(r)r 
i

(r)�(! � "
i

+ "
f

).

In the non-retarded limit, radiation corrections can be neglected, so that the transfer of linear momentum along z
has to coincide with the time-integral of the force in that direction. A detailed balance expression can be written in
frequency components as

F
z

(!) =
~!
v
�(!). (10)
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Additionally, the angular momentum transfer to the cluster, obtained from the integral of ⌧ (!) over the whole !
spectrum, should exactly cancel the orbital momentum gain of the electron. For an incident electron without a net
orbital angular momentum, conservation of the z component requires to satisfy the condition

⌧
z

(!) = �~m�(!). (11)

We have analytically corroborated Eqs. (10) and (11) for a single particle. For clusters consisting of several particles,
the algebra becomes rather involved, but we have numerically verified them up to the computer numerical precision.
Finally, we note that the extrinsic torque generally dominates the transfer to chiral clusters similar to those considered
in this work, as illustrated for a particular case in Fig. S4(d). However, the relative contributions of intrinsic and
extrinsic torques are very dependent on geometry. Incidentally, we have focused on forces and torques along z, which
are relevant to the present study, although a similar analysis could be carried out for x and y components in connection
to lateral deflections of the electron.

II. CHIRAL MOLECULE

A. Inelastic electron transition probability for a chiral molecule

The energy-loss probability for a chiral molecule placed at the position r
0

with respect to the origin of the electron
vortex can be obtained from Eqs. (2) and (3), in which the Green tensor is now given by Eq. (D2) (see Appendix D).
We find

h(R,R0,!) =
e2

⇡~!2

Z
dz dz0 e�iqz(z�z

0
) Im

�
TT(r� r

0

,!) · ·T(r
0

� r0,!)
 
,

where is a 6⇥ 6 generalized polarizability matrix derived in Appendix C and T(r
0

� r0,!) is a 6-component vector
obtained by projecting the electric-electric induced Green tensor on the ẑ direction (i.e., along the electron beam).
More precisely,

T(r
0

� r0,!) =

2

66666666664

x̂ · G0

EE

(r
0

� r0,!) · ẑ

ŷ · G0

EE

(r
0

� r0,!) · ẑ

ẑ · G0

EE

(r
0

� r0,!) · ẑ

x̂ · G0

ME

(r
0

� r0,!) · ẑ

ŷ · G0

ME

(r
0

� r0,!) · ẑ

ẑ · G0

ME

(r
0

� r0,!) · ẑ

3

77777777775

.

Following an almost identical derivation as the one in Sec. IA, and taking into account the symmetries of the free-space
Green functions, we obtain a similar expression as Eq. (4) for the loss probability,

�(!) =
4e2q2

z

⇡~v2�2
X

f?

Im
�
N+ · ·N

 
,

where the 6-component vector N = [N
EE

, N
ME

] has both electric and crossed electric-magnetic components,

N
EE

=

Z
d2R  ⇤

f?(R) 
i?(R)


(R�R

0

)

|R�R
0

|K1

✓
q
z

|R�R
0

|
�

◆
+ ẑ

i

�
K

0

✓
q
z

|R�R
0

|
�

◆�
,

N
ME

= ẑ⇥

v

c

Z
d2R  ⇤

f?(R) 
i?(R) K

1

✓
q
z

|R�R
0

|
�

◆
(R�R

0

)

|R�R
0

|

�
.

We now apply this formula to study the transition from an electron plane wave to a m
f

vortex beam. The loss
cross-section is formally equivalent to the one obtained for the cluster of spheres,

�
mf (!) =

8e2q2
z

~v2�2

Z 1

0

P
f

dP
f

Im
�
M+ · ·M

 
,
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but here the polarizability corresponds to the chiral molecule and the components of vector M = [M
EE

, M
ME

] are

M
EE

=


g
1

K 0
mf

✓
q
z

R
0

�

◆
+ g

2

I 0
mf

✓
q
z

R
0

�

◆�
R̂

0

+


g
1

K
mf

✓
q
z

R
0

�

◆
+ g

2

I
mf

✓
q
z

R
0

�

◆�
i

✓
�m

f

�

R
0

q
z

'̂
0

+
1

�
ẑ
0

◆
,

M
ME

=
v

c


g
1

K
mf

✓
q
z

R
0

�

◆
+ g

2

I
mf

✓
q
z

R
0

�

◆�
i
m

f

�

R
0

q
z

R̂
0

+
v

c


g
1

K 0
mf

✓
q
z

R
0

�

◆
+ g

2

I 0
mf

✓
q
z

R
0

�

◆�
'̂
0

, (12)

where g
1

and g
2

are defined in Eqs. (7).
These expressions are used to produce the results shown for molecules in the main paper.

B. Dichroism as a function of the crossed electric-magnetic terms in the polarizability

In the following, we show that the dichroism only depends on the crossed electric-magnetic components of the
polarizability, and more precisely, on the scalar product between the electric and magnetic dipoles. For simplicity,
we consider a molecule with an electric dipole p

eg

= p
eg

x̂ oriented along x̂ and a magnetic dipole with components
along all possible directions, m

eg

= m
eg,x

x̂+m
eg,y

ŷ +m
eg,z

ẑ. The only nonzero terms of ↵
EM

(!) are then

↵x�

EM

=
p
eg

m
eg,�

~


1

!
0

� ! � i�
0

/2
� 1

!
0

+ ! + i�
0

/2

�
,

where � = x, y, z. From here, we find

M+ · ·M =↵xx

EE

|Mx

EE

|2 + ↵xx

MM

|Mx

ME

|2 + ↵yy

MM

|My

ME

|2

+2 ↵xy

MM

Re{(Mx

ME

)⇤My

ME

}
+2 i ↵xy

EM

Im{My

ME

(Mx

EE

)⇤}
+2 i ↵xx

EM

Im{Mx

ME

(Mx

EE

)⇤}, (13)

where only the last term is odd with respect to m
f

(i.e., it is the only one that produces dichroism). Inserting M
ME

[Eq. (12)] into Eq. (13), the dichroism reduces to

�
mf (!)� ��mf (!) =

32e2q
z

~vc�R
0

m
f

Re{↵xx

EM

} F(R
0

,!),

where

F(R
0

,!) =

Z 1

0

P
f

dP
f


g
1

K 0
mf

✓
q
z

R
0

�

◆
+ g

2

I 0
mf

✓
q
z

R
0

�

◆�
g
1

K
mf

✓
q
z

R
0

�

◆
+ g

2

I
mf

✓
q
z

R
0

�

◆�
.

As expected, this only depends on the scalar product p
eg

·m
eg

(i.e., the crossed electric-magnetic polarizability).

Appendix A: Polarizability of a spherical particle

In this work, we consider identical homogeneous spherical particles represented through their scalar polarizability.
We calculate the latter from the dipolar electric Mie scattering coe�cient as

↵(!) =
3c3

2!3

�j
1

(⇢
0

) [⇢
1

j
1

(⇢
1

)]0 + ✏ [⇢
0

j
1

(⇢
0

)]0 j
1

(⇢
1

)

h
(+)

1

(⇢
0

) [⇢
1

j
1

(⇢
1

)]0 � ✏
h
⇢
0

h
(+)

1

(⇢
0

)
i0

j
1

(⇢
1

)
,

where ✏ is the permittivity of the particle, a is the radius, j
1

(x) = (sinx)/x2� (cosx)/x and h
(+)

1

(x) = (1/x2� i/x)eix

are spherical Bessel and Hankel functions, respectively, ⇢
0

= !a/c, ⇢
1

=
p
✏⇢

0

, and the prime denotes di↵erentiation
with respect to the argument.
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Appendix B: Electromagnetic Green tensor of a small-particle cluster

The electromagnetic Green tensor G describes the response of a structure to external sources. More precisely, we
define it in frequency space ! through the relation

E(r,!) =
i

!

Z
d3r0 G(r, r0,!) · j(r0,!) (B1)

between an external current density j(r,!) and the electric field that it generates. We intend to obtain a general
expression for G in the presence of small particles placed at positions r

j

and described through their (identical)
polarizability ↵(!).

First, we note that the current associated with an individual dipole p
j

at position r
j

is �i!p
j

�(r � r
j

), so that
according to Eq. (B1) the electric field produced by that dipole reduces to

G0(r� r
j

,!) · p
j

, (B2)

where

G0(r,!) =
�
k2I+r⌦r

� eikr

r
(B3)

is the vacuum Green tensor, k = !/c, and I is the 3 ⇥ 3 unit matrix. For a particle cluster, we can write the
self-consistent dipole at particle j in response to an externally applied field Eext

j

= Eext(r
j

,!) as

p
j

= ↵

✓
Eext

j

+
X

j

0 6=j

G0

jj

0 · p
j

0

◆
, (B4)

where

G0

jj

0 = G0(r
j

� r
j

0 ,!).

The sum in Eq. (B4) represents the field produced at r
j

by dipoles other than j. It is useful to note that this expression
can be straightforwardly applied to describe samples of arbitrary shape, in the spirit of the so-called discrete-dipole
approximation (DDA) [3]. We use matrix notation throughout this work, with matrix indices running over the three
Cartesian directions for each and all of the particles j. In particular, Eq. (B4) can be recast as

p =
1

↵�1 � G0

·Eext. (B5)

Now, considering the external field

Eext

j

=
i

!

Z
d3rG0(r

j

� r,!) · j(r,!) (B6)

produced by the current j, calculating the self-consistently induced dipoles from Eq. (B4), and summing the dipole
fields given by Eq. (B2), we finally obtain an expression identical to Eq. (B1) with

G(r, r0,!) =
X

jj

0

G0(r� r
j

,!) ·
✓

1

↵�1 � G0

◆

jj

0
· G0(r

j

0 � r0,!). (B7)

Appendix C: Polarizability of a chiral molecule

In this appendix, we derive expressions for the electric and magnetic polarizabilities of a chiral molecule. We
consider transitions between the ground |gi and excited |ei quantum states of the molecule, with resonant frequency
!
0

= "
e

� "
g

. The system Hamiltonian H consists of a free term and an interaction term

H
int

= �p ·E�m ·H,
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where E and H correspond to the external classical electromagnetic field at the position of the molecule, which for
simplicity we take to be monochromatic,

E = E(!) e�i!t +E⇤(!) ei!t,

H = H(!) e�i!t +H⇤(!) ei!t.

Our results can be trivially extended to polychromatic fields. The molecule wave function is a superposition of ground
and excited states,

| (t)i = c
g

(t) e�i"gt |gi+ c
e

(t) e�i"et |ei .

Inserting this expresssion into Schrödinger’s equation i~@
t

| (t)i = H | (t)i, the coe�cients c
g,e

(t) are found to satisfy
the equations

ċ
g

(t) =
i

~ce(t) [pge

·E(!) +m
ge

·H(!)] e�i(!+!0)t +
i

~ce(t) [pge

·E⇤(!) +m
ge

·H⇤(!)] ei(!�!0)t,

ċ
e

(t) =
i

~cg(t) [peg

·E(!) +m
eg

·H(!)] e�i(!�!0)t +
i

~cg(t) [peg

·E⇤(!) +m
eg

·H⇤(!)] ei(!+!0)t,

where

p
eg

= he|p|gi = �e he|r|gi ,

m
eg

= he|m|gi = � e

2m
e

c
he|L|gi = ie~

2m
e

c
he|r⇥r|gi

are the electric and magnetic transition matrix elements. The linear response polarizabilities are obtained from
first-order perturbation theory (i.e., setting c

g

= 1 and c
e

= 0 in the right-hand side of the above equations). The
amplitude of the excited state reduces to

c
e

(t) = �1

~
p
eg

·E(!) +m
eg

·H(!)

! � !
0

+ i�
0

/2
e�i(!�!0)t +

1

~
p
eg

·E⇤(!) +m
eg

·H⇤(!)

! + !
0

� i�
0

/2
ei(!+!0)t,

where �
0

is an e↵ective decay rate. The expected values of the electric and magnetic dipoles are then

hp(t)i =� 1

~
p
eg

·E(!)p
ge

+m
eg

·H(!)p
ge

! � !
0

+ i�
0

/2
e�i!t +

1

~
p
eg

·E⇤(!)p
ge

+m
eg

·H⇤(!)p
ge

! + !
0

� i�
0

/2
ei!t + c.c.,

hm(t)i =� 1

~
p
eg

·E(!)m
ge

+m
eg

·H(!)m
ge

! � !
0

+ i�
0

/2
e�i!t +

1

~
p
eg

·E⇤(!)m
ge

+m
eg

·H⇤(!)m
ge

! + !
0

� i�
0

/2
ei!t + c.c.,

where c.c. stands for complex conjugate.
We now define the polarizability components from the expression

p(t) = [↵
EE

(!) ·E(r,!) + ↵
EM

(!) ·H(r,!)] e�i!t + c.c., (C1a)

m(t) = [↵
ME

(!) ·E(r,!) + ↵
MM

(!) ·H(r,!)] e�i!t + c.c. (C1b)

Taking into account the hermiticity of p and m, we finally obtain the 6⇥ 6 generalized polarizability matrix

=


↵
EE

↵
EM

↵
ME

↵
MM

�
,

where

↵
EE

(!) =
1

~


1

!
0

� ! � i�
0

/2
+

1

!
0

+ ! + i�
0

/2

�
p
ge

⌦ p
eg

, (C2a)

↵
MM

(!) =
1

~


1

!
0

� ! � i�
0

/2
+

1

!
0

+ ! + i�
0

/2

�
m

ge

⌦m
eg

, (C2b)
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↵
EM

(!) =
1

~


1

!
0

� ! � i�
0

/2
� 1

!
0

+ ! + i�
0

/2

�
p
ge

⌦m
eg

, (C2c)

↵
ME

(!) = �↵T

EM

(!). (C2d)

Notice that the dichroism response originates in the crossed electric-magnetic terms ↵
EM

and ↵
ME

, and therefore,
only non-orthogonal electric and magnetic dipoles produce chirality. It is thus convenient to express the dipole
elements in terms of the strength of the electric dipole and the projection of the magnetic dipole on the electric one
[4],

|p
ge

| = er
ge

,

(p
ge

·m
eg

)/|p
ge

| = � ie!
0

r
eg

r
0

2c
.

Finally, we calculate the extinction cross-section of the molecule from

�ext(!) =
4⇡k

|E(!)|2 Im {p (!) ·E⇤(!) +m (!) ·H⇤(!)}

to obtain the optical dichroism shown in Fig. 3(d) of the main paper.

Appendix D: Electromagnetic Green tensor of a chiral molecule

We need to derive the electromagnetic Green tensor in the presence of a chiral particle (e.g., the molecule considered
in Appendix C). We first write a generalization ot Eq. (B1) to describe the response of the particle to electric and
magnetic external current densities j

E

and j
M

as

E(r,!) =
i

!

Z
d3r0 G

EE

(r, r0,!) · j
E

(r0,!) +
i

!

Z
d3r0 G

EM

(r, r0,!) · j
M

(r0,!),

H(r,!) =
i

!

Z
d3r0 G

ME

(r, r0,!) · j
E

(r0,!) +
i

!

Z
d3r0 G

MM

(r, r0,!) · j
M

(r0,!).

The currents associated with individual electric and magnetic dipoles p and m placed at position r
0

are

j
E

(r,!) = �i ! p �(r� r
0

),

j
M

(r,!) = �i ! m �(r� r
0

),

so that the electric and magnetic fields produced by these dipoles reduce to

E(r,!) = G0

EE

(r� r
0

,!) · p+ G0

EM

(r� r
0

,!) ·m, (D1a)

H(r,!) = G0

ME

(r� r
0

,!) · p+ G0

MM

(r� r
0

,!) ·m, (D1b)

where

G
EE

(r� r
0

,!) = G
MM

(r� r
0

,!) = G0(r� r
0

,!),

G
EM

(r� r
0

,!) = �G
ME

(r� r
0

,!) = � 1

ik
r⇥ G0(r� r

0

,!),

and G0(r, r0,!) is the vacuum Green tensor defined by Eq. (B3).
We can now write the dipoles induced by an external field using the polarizability as defined by Eqs. (C1), which

can be combined with Eqs. (D1) to write the induced electric and magnetic fields as

"
E(r,!)

H(r,!)

#
=

i

!

Z
d3r0 G(r, r0,!) ·

"
j
E

(r0,!)

j
M

(r0,!)

#
.
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Then, the induced Green tensor is a 6⇥ 6 matrix,

G(r, r0,!) =
"
G
EE

(r, r0,!) G
EM

(r, r0,!)

G
ME

(r, r0,!) G
MM

(r, r0,!)

#

=

"
G0

EE

(r� r
0

,!) G0

EM

(r� r
0

,!)

G0

ME

(r� r
0

,!) G0

MM

(r� r
0

,!)

#
· ·

"
G0

EE

(r
0

� r0,!) G0

EM

(r
0

� r0,!)

G0

ME

(r
0

� r0,!) G0

MM

(r
0

� r0,!)

#
. (D2)

Taking into account that the magnetic current generated by the moving electron is negligible, as it originates in
motion within the transversal plane, in which the electron velocity is small, we only consider inelastic losses mediated
by G

EE

.

Appendix E: Absorption bands of the ↵-helix

The polarizability of the ↵-helix in the 190-220 nm spectral region is dominated by three optical resonances, each
of them contributing with a Lorentizian term like in Eqs. (C2). We summarize in the following table the parameters
of these absorption bands as fitted to the measurements of Ref. [5]:

Band ~!0 (eV) ~�0 (eV) Polarization reg (nm) r0 (nm)

1 6.53 0.5 ⇡ ! ⇡⇤, ? 0.048 0.12

2 5.96 0.4 ⇡ ! ⇡⇤, k 0.022 -0.22

3 5.64 0.4 n ! ⇡⇤, k 0.01 -0.82

The magnetic dipole associated with each resonance is considered to be parallel to the electric one, as only that
component of m produces dichroism. The orientation of these dipoles relative to the molecule long axis are given in
the polarization entry of the above table. The results of the main paper are obtained for random orientations of the
molecule, over which the intensities are averaged using a su�ciently large number of Euler angles.

[1] F. J. Garćıa de Abajo, Rev. Mod. Phys. 82, 209 (2010).
[2] F. J. Garćıa de Abajo, Phys. Rev. B 60, 6086 (1999).
[3] B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).
[4] A. O. Govorov, Z. F. P. Hernandez, J. M. Slocik, and R. R. Naik, Nano Lett. 10, 1374 (2010).
[5] W. C. Johnson and I. Tinoco, J. Am. Chem. Soc. 94, 4389 (1972).


